Affinization of Category O for Quantum Groups
نویسنده
چکیده
Let g be a simple Lie algebra. We consider the category Ô of those modules over the affine quantum group Uq(ĝ) whose Uq(g)-weights have finite multiplicity and lie in a finite union of cones generated by negative roots. We show that many properties of the category of the finite-dimensional representations naturally extend to the category Ô. In particular, we develop the theory of q-characters and define the minimal affinizations of parabolic Verma modules. In types ABCFG we classify these minimal affinizations and conjecture a Weyl denominator type formula for their characters.
منابع مشابه
Quantum Kac-moody Algebras and Vertex Representations
We introduce an affinization of the quantum KacMoody algebra associated to a symmetric generalized Cartan matrix. Based on the affinization, we construct a representation of the quantum Kac-Moody algebra by vertex operators from bosonic fields. We also obtain a combinatorial indentity about Hall-Littlewood polynomials. To appear in Lett. Math. Phys.
متن کاملCategories of Modules over an Affine Kac–moody Algebra and Finiteness of the Kazhdan–lusztig Tensor Product
To each category C of modules of finite length over a complex simple Lie algebra g, closed under tensoring with finite dimensional modules, we associate and study a category AFF(C)κ of smooth modules (in the sense of Kazhdan and Lusztig [13]) of finite length over the corresponding affine Kac–Moody algebra in the case of central charge less than the critical level. Equivalent characterizations ...
متن کاملCategory O for Quantum Groups
In this paper we study the BGG-categories Oq associated to quantum groups. We prove that many properties of the ordinary BGG-category O for a semisimple complex Lie algebra carry over to the quantum case. Of particular interest is the case when q is a complex root of unity. Here we prove a tensor decomposition for both simple modules, projective modules, and indecomposable tilting modules. Usin...
متن کاملCategories of Modules over an Affine Kac–moody Algebra and the Kazhdan–lusztig Tensor Product
To each category C of modules of finite length over a complex simple Lie algebra g, closed under tensoring with finite dimensional modules, we associate and study a category AFF(C)κ of smooth modules (in the sense of Kazhdan and Lusztig [9]) of finite length over the corresponding affine Kac– Moody algebra in the case of central charge less than the critical level. Equivalent characterizations ...
متن کاملQuantum Toroidal Algebras and Their Representations
Quantum toroidal algebras (or double affine quantum algebras) are defined from quantum affine Kac-Moody algebras by using the Drinfeld quantum affinization process. They are quantum groups analogs of elliptic Cherednik algebras (elliptic double affine Hecke algebras) to whom they are related via Schur-Weyl duality. In this review paper, we give a glimpse on some aspects of their very rich repre...
متن کامل